
AD-A16 534 DES.IGN AND ANAYI OF AN SO (STRUCTURED QUERYI
A LANGUAGE) INTERFAC FOR A MULT BACKEND DATABASE SYSTEM

(US)AR NAVAL POSTGRADUAT SCHOOL MONTERE CA SN MACY.IIIMAbI
IEEIhhEIhIEIIE
IIlf IIffflIIII
MEEI onsIIIIIIIIIIIIIIIfIIIIIflf
IIIuuurnuuuuuuuI*IIIIIuII

1125 1. . 10 1.6

NATIONAL BUREAU OF STANDA-DS 1963A

'U..

NAVAL POSTGRADUATE SCHOOL
Monterey, California

qe.

IDTIC

LECT
OCT 1 1 18

THESIS
DESIGN AND ANALYSIS OF AN SQL

INTERFACE FOR A
MULTI-BACKEND DATABASE SYSTEM

by

Griffin Newton Macy

March 1984

LAJ
_j Thesis Advisor: D. K. Hsiaj

Approved for public release; distribution unlimited
C-.

8)4 10 10 020

-mum

ECUmATV CLASSIFICATION OF THIS PAE imi fDa E4e _________________

RM"TOMMNTATOM AGERZAD INSTRUCTIONSREPOR DOCUENTAiON PGE UORE COUPLETING FORM
I. REPORT MUNISSR jL~, S 3 J CIPIENTSCATALOG NUMBER

14. TITLE (m andl Ile) S. TPE OF REPORT 6 PERIOD COVERED

Design and Analysis Of an SQL Interface 'Master's Thesis
for a Multi-backend Database System March, 19R4-

S. PERPORMING Oita. REPORT NUMS1ER1

TAU NOAW) 11. CONTRACT OR GRANT NUMSER(s)

Griffin Newton Macy

S. ParPommino @MGAuiriZAToe NAME AND ABDRESS 10. PROGRAM ELEMENT PROJECT. TASK

Naval Postgraduate School AREA & WORK UN IT NUMUERS

Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. R4EPORT DATE
Naval Postgraduate School March, 1984
Monterey, California 131 NUNSER or PAGES

14. MONITORING AGENCY NAME & AO5*ESSfI1&$$Wn bft Cmhueliang 0115cc) IS. SECURITY CLASS. (of this topefl)

S* DECASSIFICATION, DOWNORACOING

IS. DISTRIUTION STATEMENT rot We. ftipai)

Approved for public release; distribution unlimited

17. OISTRIOUTIOw STATEMEN4T (of Me ebeire ,eteed in BlSek 20. Hi lIitenet tram Rope")

IS. SUPPIAMEM0TARY NOTES

It. KEY Won"S (Cetho o miere aide of "Oaeume fad Idoneif? 6F week Mem ber)

Relational Database Systems, SQL, Relational Query Languages

110 SSTMACT f~ewkn GO cmm e 410 " ccccmp sad Idm"Itr by block Maomv)

Recent research in the area of database machines has been directed
at achieving greater efficiency and increasing user-friendliness.

[Re This thesis is concerned with the second of these research direct-ions, increasing user-friendliness. One development toward in-
creased user-friendliness is the growing acceptance of the rela-
tional data model and relational query languages. Relational
interfaces provide the user with an easy-to-understand (Continued)

co DO F~~.u nwo 147 NovI s 113SSOLETE
S/N 0102. LFP.O14- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (on Dol Sate,

SIECUNITY CLASSIICATION OF THIS PAGS fftm Da E...r

ABSTRACT (Continued)

data representation and language with which to manipulate the data
This thesis presents the design and analysis of a relational query
language interface, using the SQL relational query language, for
the Multi-Backend Database System (MDBS), a database machine which
uses the attribute-based model. The purpose is two-fold: first,
o provide the user with an easier-to-understand language-to-
achine interface, thereby making MDBS available to the wider com-
unity of relational database users; second, to investigate how
he attribute-based model may be used to support relational data-
ases.

Ace in Fo r

DirqtA bil a-,',r

, 0. 102.L .01 o601 2

S6CUIUTY CLASSIFICATION OF THIS PAG(lM1 DBa rtfE)

Approved for public release, distribution unlimited.

Design and Analysis of
an SQL Interface

for a
Multi-backend Database System

by

Griffin Newton Macy
Lieutenant, United States Navy

B.S.M.E., University of Kansas, 1978

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March, 198

, / -7

Author: _

Approved by: /L ' . 4'Y
Thesis Advisor

Second Reader

Chairman, Department of Computer Science

ean of Inficy Sciences

3k

ABSTRACT

J Recent research in the area of database machines has

been directed at achieving greater efficiency and increasing

user-friendliness. This thesis is concerned with the second

of these research directions, increasing user-friendliness.

One development toward increased user-friendliness is the

growing acceptance of the relational data model and rela-

tional query languages. Relational interfaces provide the

user with an easy-to-understand data representation and

language with which to manipulate the data.

This thesis presents the design and analysis of a rela-

tional query language interface, using the SQL relational

query language, for the Multi-Backend Database System

(MDBS), a database machine which uses the attribute-based

model. The purpose is two-fold: first, to provide the user

with an easier-to-understand language-to-machine interface,

thereby making MDBS available to the wider community of

relational database users; second, to investigate how the

attribute-based model may be used to support relational

databases.

4

TABLE OF CONTENTS

I. INTRODUCTION 9

A. DESIGN GOALS FOR EFFICIENCY IN MDBS 10

B. RELATIONAL QUERY LANGUAGE DEVELOPMENTS 13

C. ORGANIZATION OF THE THESIS..................... 16

II. ORGANIZATION OF THE MULTI-BACKEND SYSTEM 17

A. THE ATTRIBUTE-BASED DATA MODEL 19

B. IMPLEMENTATION OF THE ATTRIBUTE-BASED

MODEL IN MDBS **......... 23

C. FUNCTIONS OF THE CONTROLLER 24

D. FUNCTIONS OF THE BACKEND 24

III. THE MDBS QUERY LANGUAGE 27

A. THE RETRIEVE REQUEST 27

B. THE INSERT REQUEST 29

C. THE DELETE REQUEST 29

D. THE UPDATE REQUEST 29

IV. THE RELATIONAL QUERY LANGUAGE, SQL 33

A. THE SELECT REQUEST 33

B. THE INSERT REQUEST 38

C. THE DELETE REQUEST 39

D. THE UPDATE REQUEST 40

5

V. THE MAPPINGS FROM SQL TO THE MOBS

QUERY LANGUAGE41

A.* GRAPHIC NOTATION oe o. ..42

B. MAPPING REQUESTS FROM SQL TO MDBSo.......o...43

1. Mapping the SQL SELECT into the

MDBS RETRIEVEo... oo ooo...45

2. Mapping the SQL INSERT into the

MDBS INSERT..o..o. .. o ooooo e..46

3. Mapping the SQL DELETE into the

MDBS DELETEooo.o o.... o......o....48

4. Mapping the SQL UPDATE into the

M DBS UPDATE.oo. o. 48

C. THE CONVERSION MAPPING TO THE MDBS QUERYo......51

D. THE CONVERSION MAPPING TO THE MDBS RECORD.o....56

E. THE CONVERSION MAPPING TO THE MDBS MODIFIER....o58

VI. RECOMMENDATIONS FOR IMPLEMENTATION.... ... o......65

A. SQL AND MDBS DIFFERENCES...o...........o...65

1. The Disjunctive Normal Form................66

2. Differences in the Insert Request- o... 66

8. EXPANDING THE FUNCTIONALITY OF THE

1. Implicit Joins Through Nested Selects 68

2. Formatting Options...... * 70

3. Arithmetic Operations and Functions..***...70

6

C. JOIN AND SORT OPERATIONS 71

D. TOOLS FOR ACTUAL IMPLEMENTATION 72

VII. CONCLUSION 74

A. THE DIRECT MAPPINGS 75

B. ENHANCEMENTS TO SUPPORT FURTHER MAPPINGS 78

C. OPERATIONS FOR WHICH NO MAPPING EXISTS 78

APPENDIX A: FORMAL SPECIFICATION OF DML FOR

ATTRIBUTE-BASED LANGUAGE.................... 80

APPENDIX B: FORMAL SPECIFICATION OF DML FOR

SQL MAPPING 83

LIST OF REFERENCES86

INITIAL DISTRIBUTION LIST 89

7

ACKNOWLEDG MENTS

I would like to thank the following people.

Dr. David Hsiao for the guidance he provided during the

writing of this paper and for the opportunity to learn from

him.

A very special thanks goes to Dr. Paula Strawser for her

continued help and support in the investigation, writing and

editing of this document. Her assistance and direction

repeatedly proved to be invaluable and enlightening.

My wife and son, Dixie and Chris, for their everlasting

support and faith.

8.

ri

II

I. INTRODUCTION

The rapid growth in the use of database management sys-

tems (DBMSs) has stimulated research to produce more effi-

cient and easier-to-use systems. Greater efficiency is re-

quired in order to offset the inherent costs of operating a

DBMS. One area of research directed at producing greater

efficiency is in the development of database machines. Da-

tabase machines use specially configured hardware, tailor-

made software, and innovative techniques such as massive

parallelism to support higher capacity and performance.

Greater ease of use is necessary in order to ensure a wider

distribution of use. The emergence of database systems us-

ing the relational model of data is an important development

in this area.

One of the database machines of interest is the Multi-

Backend Database System (MDBS). The idea of MDBS is to use

general-purpose hardware and special-purpose software in a

novel configuration to provide a backend database machine

solution. The design and development of MDBS is an ongoing

project [Ref. 1 and 2]. In this thesis, we will not examine

the particular database machine solution to the efficiency

problem. Rather the contribution of this thesis to the MDBS

research is in the area of ease of use. We will determine

9

rI

how the relational query language of SQL (Ref. 31 can be

supported by the attribute-based query language of MDBS

[Ref. 1]. In the next two sections, a brief review of the

design goals of MDBS and of the development of relational

query languages is presented. In the final section of the

chapter, the organization of the thesis is discussed.

A. DESIGN GOALS FOR EFFICIENCY IN MDBS

As previously mentioned, research in database machines

has been driven by the need to develop more efficient sys-

tems. Efforts have resulted in a variety of machines which

include: CASSM [Ref. 4 and 5], RAP [Ref. 6], DBC [Ref. 7 and

8], DIRECT [Ref. 9], MDBS [Ref. 1 and 21, RDBM [Ref. 101,

VERSO [Ref. 11], DBMAC [Ref. 12], and IDM [Ref. 13]. This

is not a complete listing, but does illustrate the fact that

no "best' architecture has been developed. Each of the

machines listed are unique. This uniqueness makes classifi-

cation impossible. However, while no true taxonomy of data-

base machines exists, Strawser (Ref. 14] cites several

design issues that can be used to categorize the systems.

Three of these issues, processor structure, Interconnection

of the processor and the database store, and alternative

physical organizations have particular relevance to the MDBS

design. Within each of the issues there exist tradeoffs

10

I

that affect the performance of the various machines. What

follows is a brief description of these three design issues,

and the MDBS solutions.

Many database machines are organized with a single con-

trol processor and one or more slave processors. As in any

such system, the control processor is a potential

bottleneck. Some designs seek to alleviate this problem by

having the control processor perform only administrative

tasks, or by otherwise limiting its responsibility. At the

other end of the spectrum, some machines permit the control

processor to participate in query execution. Irrespective

of the design chosen, throughput will be inversely propor-

tional to the amount of work levied on the control proces-

sor. A goal of the MDBS design is to minimize the poten-

tial control processor bottleneck. The control processor

performs a minimal set of functions, only those which are

necessary to administer query execution.

Additional differentiation of processor structures can

be made between homogeneous and heterogeneous multiprocessor

organizations. Homogeneous organizations use a number of

processors with identical functionality. This allows for a

high degree of intra-guery parallelism. The heterogeneous

organization is characterized by a number of processors with

specialized functionality, thus permitting inter-query

11

parallelism. MDBS uses a homogeneous multiprocessor organi-

zation, offering a high degree of intra-query parallelism.

The software in the backend processors is identical, allow-

ing easy expansion of the system by replicating the software

when new backend processors are added. The backend proces-

sors operate in parallel. However, the backends also

operate independently. Each backend has a separate schedul-

ing mechanism, to make the optimum use of resources. Com-

munication between the processors is via a broadcast bus, to

minimize communication overhead.

There are two major categories to describe the intercon-

nection of the processor and the database store. The first,

direct interconnection, connects the processor directly to

the database store. While this method has an advantage in

that the processors never have to wait for data, it suffers

in two respects. The processor must be able to work at

speeds equivalent to the transfer rate of the secondary

storage devices, and data sharing among processors is

severely limited. The second major category is the

hierarchical interconnection. This method, which is more

prevalent, transfers data from the database store to RAM

storage for access by the processors. In MDBS, each backend

12

processor has dedicated disk drives, eliminating contention

between processors for the same device. Data is staged from

the disk to buffers in the main memory.

Like other design issues, the motivation for seeking al-

ternative physical organizations is to enhance performance.

Two such designs are the data pool organization used in

DBMAC [Ref. 12], and the V-Relation scheme used in VERSO

[Ref. 11]. However, the gains realized from these organiza-

tions apply only to some operations. MDBS uses a cluster-

ing methodology to organize the database. Records in the

database are divided into clusters based on attribute

values. The clusters of the database are then spread across

the backends, so that the advantages of parallelism are

realized for all operations. In other words, for database

access, MDBS attempts to achieve

record-serial-cluster-parallel operations.

B. RELATIONAL QUERY LANGUAGE DEVELOPMENTS

Each successive generation of database languages has

sought to make data manipulation more user-friendly. The

idea is to remove from the user any responsibility for

knowing the particularities of system structure. Early

representations of databases, first the hierarchical model

and then the network model, require the user to understand

13

-mamma"t

the organization of the database in order to navigate

through it for the purpose of storage, retrieval and update

of the user data. The relational database approach attempts

to present the user with an easy-to-understand tabular

representation of the stored data which makes the storage,

retrieval and update operations as simple as table

manipulation.

Codd [Ref. 151 first proposed tuple relational calculus

as a benchmark for evaluating data manipulation languages

based on a relational model. The mathematical concept

underlying the relational model is the set theoretic rela-

tion, which is a subset of the Cartesian product of a list

of domains. A relation is any subset of the Cartesian pro-

duct of one or more domains. Conceptually, a relation can

be viewed as a simple, two-dimensional table that has

several properties. First, the entries in the table are

single-valued; neither repeating groups nor arrays are al-

lowed. Secondly, the entries in any column are all of the

same kind, that is each column has a domain of values that

can appear in the column. Each column has a unique name and

the order of the columns is immaterial. In the relational

model columns are referred to as attributes.

The advantages inherent in the relational model are that

no artificial constructs such as sets or pointers are

14

- . . .- 5

required, and that the data is represented in tabular (rela-

tional) form in a way that is familiar to the user. Opera-

tions on the data are specified logically or symbolically by

relational algebra or calculus. This is of major importance

in that while the data structure is predefined, the record

relationships are not defined until they are used. Conse-

quently, any relationship that can be expressed in relation-

al algebra or calculus can be used. Among the advantages

cited for relational DBMSs is increased productivity in ap-

plications development, due to the simplicity and

flexibility of the model and the relational query languages.

The importance of the relational model in regards to

this paper is not in its implementation, but rather the log-

Ical representation it offers to the user. This representa-

tion is developed through the use of relational query

languages like SQL. SQL, earlier called SEQUEL, was first

introduced by Chamberlin [Ref. 16] to be used with the

relational model. It was another attempt to provide the

user with an English-like language with which he could

construct and manipulate his database. Developments and

changes to the language grew out of IBM System R research

[Ref. 3].

15

As pointed out by Hsiao [Ref. 17] the relational model

suffers in its lack of solutions to the problems of database

transformation and query translation. Conversely, any rela-

tional database may be transformed, in a straightforward

way, into the attribute-based database used by MDBS. There-

fore it is practical to think in terms of a relational data-

base implemented on MDBS. Developing a relational query

language interface to MDBS has several advantages. First,

we provide an easy-to-use interface which afford the user

the productivity increase claimed for relational query

languages. Second, by choosing to implement the interface

for SQL, the most widely used relational query language, we

provide homogeneity for a wide community of database system

users. Third, we identify those areas in MDBS where

enhancements must be made in order to provide a full

relational language capability.

C. ORGANIZATION OF THE THESIS

In Chapter 2 an overview of the organization of the

multi-backend system is presented. Chapter 3 describes the

MDBS query language. The SQL query language is described in

Chapter 4. Chapter 5 explains the mappings from SQL to the

MDBS query language. Chapter 6 offers recommendations for

implementation, and Chapter 7 summarizes -he conclusions

obtained from the research experience.

16

7 1A

I

II. ORGANIZATION OF THE MULTI-BACKEND SYSTEM

An understanding of the organization of the multi-

backend database system is helpful in understanding some of

the design considerations of the MDBS query language. Fig-

ure 1 is a representation of the MDBS hardware organization.

The system is comprised of a controller and a number of

backends, all general-purpose minicomputers. A broadcast

bus connects the controller and the backends. Each backend

has a dedicated number of disk drives.

The major design goals of MDBS are to allow the database

to grow and the rate of requests to increase while maintain-

ing good overall performance. To obtain these goals the

multi-backend database system should have the following

properties:

(1) Throughput improvement is proportional to the

multiplicity of backends;

(2) Response time is inversely proportional to the

multiplicity of backends;

(3) The system is extensible for future growth

and/or performance improvement;

These properties are obtained through various MDBS design

considerations. MDBS seeks to minimize the potential of the

control processor to be a bottleneck by minimizing the

17

To the
host Controller

computer.

Figure 1. Overview of MDBS

18

controller functions. Accordingly, MDBS is viewed in terms

of controller functions and backend functions, as depicted

in Figure 2. Each backend is responsible for conducting its

own operations, including queueing and scheduling of re-

quests. Identical operating software is maintained at each

backend. Expansion of the system is accomplished by

replicating this software in additional backends.

The database is distributed across all the backends via

the clustering mechanism, explained in the next section of

this chapter. Requests from the controller are broadcasted

to all the backends at the same time for processing. This

allows for parallel processing of requests. Requests are

queued at each backend. To permit continuous execution of

requests each backend schedules request execution indepen-

dently. The addition of more backends results in an increase

in parallel processing of requests, which improves

throughput and response time.

In the next three sections, descriptions of the

attribute-based data model, the functions of the controller

and the functions of the backend are presented.

A. THE ATTRIBUTE-BASED DATA MODEL

The data model used in MDBS is the attribute-based model

developed by Hsiao and Harary [Ref. 17]. In their work they

19

Request Insert Post Directory Record Concurrenc"

igiure 2. Functional Division of MDBS

20

use the set A to represent attributes and the set V to

represent values. A record is then defined to be a subset

of the Cartesian product A x V, where each attribute has one

and only one value. This way the record, R, is a set of

ordered pairs of the form (an attribute, its value).

For each record R, a set of its attribute-value pairs

which collectively characterize R is formed. These sets of a

record collection form an index. These ordered pairs In the

index are called the keywords. The index is used to

identify a record or a set of records.

Following the keywords is the record body, which is a

string of characters not used by MDBS for search purposes.

An example of a record index without a following body is

shown below.

(<FILE,employee>,<NAME,Smith>,<CITY,Monterey>,<RANK,3>)

The first attribute-value pair in all records of a file are

the same, since it designates the file name. In the example

above the file name Is *employee'.

In order to enhance the performance of the system,

records are logically grouped Into clusters. The clustering

is determined by the attribute values and attribute value

ranges in the records. In the example above, records could

21

be clustered on the NAME attribute, with all employees

having a last name starting with the letter 'S' clustered

together.

Keyword predicates are used in the data manipulation

language for search and retrieval purposes. The keyword

predicate has the form (attribute, relational operator,

value). For example,

(SALARY > 2000)

is a simple greater-than predicate. A keyword is said to

satisfy a predicate if the attribute of the keyword is

identical to the attribute of the predicate and the relation

specified by the relational operator of the predicate holds

for the value of the keyword and the value of the predicate.

For example, the keyword <RANK,4> satisfies the predicate

(RANK < 6).

A conjunction is simply a conjunction of predicates,

such as:

(SALARY > 10000) A (RANK = 3)

A record satisfies a query conjunction if the record

contains keywords that satisfy every predicate in the

conjunction. A query is a boolean expression of predicates,

such as:

((DEPT - Sales) A (SALARY < 10000)) V

((DEPT - Sales) A (SALARY > 15000))

22

B. IMPLEMENTATION OF THE ATTRIBUTE-BASED MODEL IN MDBS

The indices of the attribute-based model are

implemented in MDBS as descriptors. Descriptors are defined

for designated directory attributes. The rules of

definition require that the descriptors for a directory

attribute form a partition over the domain of the attribute.

Clusters result from the partitioning of the database

according to the descriptor definitions. A record belongs

to the cluster defined by the set of descriptors which can

be derived from the keywords of the record.

The clustering mechanism provides an ideal vehicle for

distributing data across the backends of MDBS to take full

advantage of parallelism. The records of a cluster are

distributed track-at-a-time across all the backends.

Therefore the work of query execution can be shared across

the backends, with each backend processing the query against

its portion of the relevant cluster(s). For a more detailed

explanation of the clustering mechanism, readers are

referred to [Ref. 1].

23

iI

C. FUNCTIONS OF THE CONTROLLER

It is important to reiterate that a basic design

consideration of MDBS is to minimize the functions of the

controller. These functions are divided into three

categories: request preparation, insert information

generation, and post processing. The request preparation

functions comprise the necessary operations performed on a

request prior to its broadcast to the backends. These

functions include parsing and syntax checking. Insert

information generation functions are performed during the

processing of an insert request in order to supply

additional information needed by the backends. Post

processing functions are performed after replies are

returned from the backends. For example, these functions

perform housekeeping duties on the separate responses to the

single broadcast request, that is, the collection of the

data prior to transmission to the host machine.

D. FUNCTIONS OF THE BACKEND

Functions within each backend are divided into three

categories: directory management, record processing, and

concurrency control. The directory management function is

" further divided into descriptor search, cluster search,

address generation, and directory table maintenance. It is

24

responsible for searching through the descriptors and

clusters to determine the disk addresses for the records to

be accessed. The record processing functions include: record

storage, record retrieval, record selection, and attribute

value extraction of the retrieved records. Concurrency

control is maintained by the locking of clusters to prevent

conflicting access to the same clustered data.

Figure 3 is a representation of the operations performed

on a user request. A request is submitted to the host,

which converts it to the internal form of the MDBS

environment. The controller parses the request and checks

for syntax errors, then broadcasts the request to all of the

backends. The work of descriptor search is shared among all

backends. Each backend does its portion of descriptor

search, and broadcasts its findings to all the other

backends. When all descriptors have been identified, each

backend independently performs cluster search. The

appropriate records are then selected, values extracted and

the results sent back to the controller. The controller

collects the results from all the backends, performs any

final aggregation required, and forwards the data to the

host.

25

I~i

I.I
Parsing

Reauest

Descriptor Search }
Boolean Expression
of Descriztor ids

Cluster Search

Cluster Ids

Address Generation j
Addresses

Record Selection

Records

Value Extraction

Values

zAorezate Cperations

Results

Finure 3. Request Flow in MDBS

26

III. THE MDBS QUERY LANGUAGE

The query language for MDBS is a non-procedural language

in which queries are expressed in the disjunctive normal

form. The language itself supports four different types of

requests: retrieve, insert, delete, and update. Appendix A

is a formal specification of the language. In the examples

below, reserved words are capitalized and optional portions

of queries are enclosed in brackets.

A. THE RETRIEVE REQUEST

The RETRIEVE is the most flexible of the operations on

the database. It is the user's vehicle to query the data-

base for information. Unlike the other three operations,

the retrieve does not alter the contents of the database.

Its syntax is:

RETRIEVE Query Target_list (BY attribute] (WITH pointer].

As shown above, the RETRIEVE request consists of five parts.

The last two parts, those enclosed in square brackets, are

optional. The operator RETRIEVE is a reserved word and

indicates the type of request. The query is made up of

predicates in the disjunctive normal form. The query

defines the portion of the database which is to be

retrieved. The target list is the list of attributes for

27

which values are to be extracted from the records which

satisfy the query. The attribute value may be a value from

the record, or an aggregate of values from multiple records.

Five aggregate operators are supported in MDBS: AVG, COUNT,

MAX, MIN, and SUM.

The BY clause performs an ordering on the data returned.

For example, to RETRIEVE all the employees names ordered

according to department, the following query can be used.

RETRIEVE(FILE = Employee)<NAME> BY DEPT

The WITH clause specifies whether pointers to the

retrieved records must be returned to the user for later use

in an update request.

Let us examine some examples of RETRIEVE requests.

Example 1. Retrieve the names of all employees who make

less than $10,000.

RETRIEVE((FILE = Employee) A (SALARY < 10000))<NAME>

Example 2. Retrieve the average salary of employees who

have a rank greater than 2, order by depart-

ment.

RETRIEVE((FILE = Employee) A(RANK > 2))

<AVG(SALARY)> BY DEPT

28

1t

t

B. THE INSERT REQUEST

The INSERT request is used to add records to the data-

base. The syntax is:

INSERT Record

where record is the record to be inserted into the database.

An example of an INSERT request is:

INSERT(<FILE,Employee>,<NAME,Smith>,<SALARY,10000>)

This creates a record in the employee file for Smith and

sets his salary at 10000.

C. THE DELETE REQUEST

The DELETE request Is used to remove records from the

database. The syntax is:

DELETE Query

where query is of the same form as that used in the RETRIEVE

request. An example is:

DELETE((FILE = Employee) A (NAME - Smith))

This deletes all records in the employee file for employees

named Smith.

D. THE UPDATE REQUEST

The UPDATE request is used to modify values for records

which already exist in the database. The syntax is:

UPDATE Query Modifier

where the query specifies the particular records to be

29

jI

modified and modifier indicates the type of modification

that is to be performed. MDBS allows five types of

modifications.

The TYPE-0 modification sets the new value of the attri-

bute being modified to a constant. An example of a TYPE-0

modification is:

UPDATE((FILE = Employee) A (NAME = Smith))

<SALARY = 5000>

This sets the salary of all employees named Smith to 5000.

In the TYPE-I modification, the new value of the attri-

bute is set to some function of the old value of the attri-

bute in the record being modified. An example of a TYPE-I

modification is:

UPDATE((FILE = Employee) A(NAME = Smith))

<SALARY = 2 * SALARY>

This doubles the salary of all employees named Smith.

The TYPE-II modification sets the new value of the at-

tribute to some function of another attribute contained

within the same record. Where a TYPE-I modification was a

function of the same attribute, the TYPE-II modification

looks at another attribute to derive a value. An example of

30

p- ---- . .

a TYPE-II modification is:

UPDATE((FILE = Employee) A (NAME = Smith))

<SALARY = 8 * RANK>

This makes all the salaries of employees with the last name

Smith equal to eight times the value of their rank.

The TYPE-III modifier derives the new value of the at-

tribute being modified from some function of another attri-

bute value contained in another record which is identified

by the query in the modifier. An example of a TYPE-III

modification is:

UPDATE((FILE = Employee) A (NAME = Smith))<SALARY =

SALARY of (FILE = Positions) A (JOB = Manager)>

Here employees named Smith get their salary set to that of a

manager's, as recorded in the Positions file.

The TYPE-IV modifier derives the new value of the attri-

bute being modified from a function of another attribute

value in another record identified by the pointer in the

modifier. This requires a retrieval request first in order

to obtain the value for the pointer. An example of a

TYPE-IV modification is:

RETRIEVE((FILE = Employee) A(NAME = Jones)) with Pointer

The retrieve request returns the value of a pointer, in this

example, say, 2000. So we can then execute the following

update request.

31

UPDATE((FILE - Employee) A (NAME - Smith))

<SALARY = SALARY of Pointer>

The effect of these two queries is that all employees with

the name Smith have their salary set to that of Jones.

3

IV. THE RELATIONAL QUERY LANGUAGE, SQL

Data in the relational data model is depicted as a two--

dimensional table. The relational query language, SQL

attempts to exploit this representation. It does this by

providing an English-like language that allows the user to

list the attributes from a relation meeting the user's

selection requirements. For a more complete description,

the reader is referred to (Ref. 3 and 16].

Various implementations of SQL provide many functions

and facilities beyond the basic SQL. The four basic con-

structs are: select, insert, delete, and update. However,

in illustrating the use of the basic constructs, we include

some other functions and facilities. In particular, some of

the examples and constructs shown below are those imple-

mented by the Oracle Corporation [Ref. 18] database

management system.

A. THE SELECT REQUEST

The SELECT request is used for retrieval of data from

the database. Its general form is as follows.

SELECT A ,...,A

FROM R

WHERE B b AND ... AND B f b

33

where A and B are attributes found in the relation R, is a

relational operator (such as >, <, -, =, >, <),, and b is a

constant. In particular, B b is termed a predicate.

Within the general guidelines above, SQL offers a great deal

of latitude in the formation of the SELECT query. Let us

look at each clause separately, the SELECT clause, the FROM

line, and the WHERE line.

Instead of listing the attributes to be retrieved on the

SELECT clause the user may request the return of the entire

relation by using the wild card character, *. SQL also

allows for the use of aggregate operators (such as AVG, SUM,

MAX), arithmetic operators (such as +, - , /), and arith-

metic functions (such as ROUND, TRUNC). Additionally, SQL

permits the user to define the format for the retrieved

data. These are only some of the basic variations

permitted. Examples of these options follow:

Example 1. Retrieve all the attributes for all the

employees. (Use of the wildcard.)

SELECT *

FROM Employee

34

Example 2. Obtain the average salary of all the

employees. (Use of an aggregate operator.)

SELECT AVG(Salary)

FROM Employee

Example 3. Obtain the total of the salary and com-

mission for each employee. (Use of an

arithmetic operator.)

SELECT Salary + Commission

FROM Employee

Example 4. Retrieve the salaries of all the employees,

rounded to the nearest dollar. (Use of an

arithmetic function.)

SELECT ROUND(Salary)

FROM Employee

Example 5. Retrieve the dates of hiring for all the em-

ployees, and format them to read

month/day/year (ex. 09/24/50).

(Use of a format option.)

35

-9

- r.. - w -, .- -

SELECT TO CHAR(Hiredate,'MM/DD/YY') Hiredate

FROM Employee

The FROM line identifies the relation or relations from

which data is to be retrieved. A single relation is speci-

fied for simple retrievals. Two or more relations are

specified for join operations.

An example of a simple SELECT on a single relation is as

follows.

Example 6. Return the names of all the employees.

SELECT Name

FROM Employee

An example of a join, involving two relations in this case,

is as follows.

Example 7. Return all the names and locations of the de-

partments which have an employee named Smith.

SELECT Name, Location

FROM Employee, Department

WHERE Name = Smith

The WHERE line establishes the conditions on which the

retrieval is to be made. Predicates are used to qualify the

selection of tuples from the relations(s). Only those

tuples which satisfy the predicates are selected. Like the

36

SELECT line it has many variations. These variations in-

clude: an attribute of the relation compared to some con-

stant, the testing of an attribute for set membership, the

use of boolean operators to create complex conditions, and

the ability to nest additional SELECT clauses in order to

extract values for comparison. The following are examples

of some of these variations.

Example 8. Retrieve the names and salaries of all the

employees that have a salary equal to 10000.

(Comparison of an attribute to a constant.)

SELECT Name, Salary

FROM Employee

WHERE Salary = 10000

Example 9. Obtain the names of the employees whose jobs

are either a clerks, analysts, or managers.

(A test for set inclusion.)

SELECT Name

FROM Employee

WHERE Job IN (Clerk,Analyst,Manager)

37

'I

Example 10. List the names of all the employees that A

have a salary equal to 10000 and are named

Smith. (A logical AND operation.)

SELECT Name

FROM Employee

WHERE Salary = 10000 AND Name = Smith

Example 11. List the name and job of employees who have

the same job as Smith. (A nested SELECT.)

SELECT Name, Job

FROM Employee

WHERE Job =

(SELECT Job

FROM Employee

WHERE Name z Smith)

B. THE INSERT REQUEST

The INSERT request is used to create rows (tuples) in a

relation (table) and has the general form:

INSERT INTO R

VALUES (V ,...,V)

where R is the relation name and V is a value. The order

in which the data values are listed in the INSERT must

correspond to the order of the columns in the table. An

38

example of an INSERT is as follows.

INSERT INTO Employee

VALUES (Smith,2,10000)

This example creates a new tuple within the employee rela-

tion. Assuming that the Employee relation has attributes

name, rank, and salary, a new tuple is created with the name

being Smith, the rank being 2, and the salary being 10000.

C. THE DELETE REQUEST

The DELETE removes a row (tuple) or rows (tuples) from a

table (relation). It has the general form:

DELETE FROM R

WHERE B 4 b ,...,B4p b

where R is the name of the relation, B is an attribute of

the relation, (is a relational operator, and b is a con-

stant. The WHERE clause for the DELETE has the same options

available that are in the SELECT. An example of a DELETE is

as follows.

DELETE FROM Employee

WHERE Name = Smith

This deletes all rows from the Employee table where the name

is equal to Smith.

39

• . I 1 ,:._

D. THE UPDATE REQUEST

The UPDATE command changes the attribute values stored

in the database. It has the general form:

UPDATE R

SET A = a ,...,A = a

WHERE 8 b ,...,B4f b

where R is the relation name, A is the attribute to be as-

signed a new value, a . The WHERE clause has options as pre-

viously discussed. An example of an UPDATE request is as

follows.

UPDATE Employee

SET Salary = 20000

WHERE Name = Smith

This update results in all employees named Smith having

their salaries set at 20000.

40

t

V. THE MAPPINGS FROM SQL TO THE MDBS QUERY LANGUAGE

The idea of a SOL interface to MDBS is to provide to the

user a friendly interface. SOL was chosen as the query

language because of its English-like syntax and the

existence of a wide-spread community of SQL users. We must

emphasize here that we are implementing an interface between

the SOL users and MDBS. We are not adding functionality to

MDBS.

The distinction between implementing an interface and

adding functionality is important for the following reason.

SOL is a relational query language. The primary operations

of SOL are SELECT, UPDATE, INSERT, and DELETE. The special

relational operations, projection and join, are included in

SOL, as well as aggregate operations, ordering, and various

set operations. SQL is usually supported by a relational

database management system which implements all of these

relational operations.

MDBS, however, is not based on the relational model.

The data model of the MDBS machine is the attribute-based

model. The attribute-based model is flexible, and can sup-

port relational data structures: relations, tuples, and at-

tributes (Ref. 17]. However, the functionality of MDBS does

not encompass all relational operations. The four primary

41

operations of the MDBS machine are RETRIEVE, UPDATE, INSERT,

and DELETE. The aggregate operations are also supported.

MDBS does not support the join and ordering operations. Nor

does it support set operations.

From the discussion above, it is clear that the set of

SOL operations to be included in our interface will be lim-

ited to those supported by the functionality of MDBS. The

subset of SQL operations which can be supported by MDBS

directly is formally specified in Appendix B. In the

remainder of this chapter, we define the mappings from the

subset of SQL which can be supported directly by the primary

operations of MDBS. We present the mappings both in graph-

ics and in text. In the next section we explain the graphic

notations. The remaining sections of this chapter give the

details of the mappings from SQL to the MDBS query language.

A. GRAPHIC NOTATION

We will show the mappings graphically, and also explain

them in text. The graphic notation is illustrated in Figure

4. The general forms of the SQL and MDBS queries used here

have been developed In Chapters IV and V. The mappings are

represented by directional arrows, and symbols indicating

the type of the mapping. We have identified two types of

mappings: syntactic substitution and conversion.

42

Syntactic-substitution mappings require only simple sub-

stitution of syntactical terms. The symbol for this type of

mapping is a square marked with the letter S. Figure 4

shows two examples of a syntactic substitution mapping. The

first example maps the SOL SELECT term to the MDBS. RETRIEVE

term. The second example maps the SQL sel_expr_list to the

MDBS target_list. This example illustrates that a syntactic

substitution may be a direct copy of clauses from the SQL

query to the MDBS query.

Conversion mappings combine a clause from a SQL query

with information about the MDBS data structure to derive the

clause of the MDBS query. The symbol for conversion mapping

is a triangle marked with the letter C. In Figure 4, the

mapping of the FROM and WHERE clauses of the SQL query into

the query clause of the MDBS request is a conversion

mapping.

In Section B, we present the overall structure of the

mappings from SQL queries to MDBS queries. In Sections C,

D, and E, we discuss individually the three conversion

mappings identified in Section B.

B. MAPPING REQUESTS FROM SQL TO MDBS

In this section, we show the syntactic-substitution

mappings for the general forms of the SQL SELECT, UPDATE,

43

SELECT

sel..expr..list

FRG?' table-name
[WHERE toolean]

LGRIOUP BY tield..name)

RETRIEVES

query

target..±Ist

EBY attribute]

flgure 4. I-arrir, th'e S'AL bELECT to the MDBS R[TP.XLVE

44

INSERT, and DELETE requests into the MDBS RETRIEVE, UPDATE,

INSERT, and DELETE requests, respectively. The conversion

mappings are explained in detail in subsequent sections.

1. Mapping the SQL SELECT into the MDBS RETRIEVE

The first mapping is the SQL SELECT request to the

MDBS RETRIEVE request. The SELECT query has the general

form:

SELECT sel_expr_list FROM table-name

(WHERE boolean]

(GROUP BY fieldname]

The RETRIEVE request has the general form:

RETRIEVE query target_list

[BY attribute]

The SELECT to RETRIEVE mapping has been shown in Figure 4.

The reserved word RETRIEVE is substituted for the reserved

word SELECT. The sel_expr_list is a list of attributes that

the user wishes to access from the database, and directly

corresponds to the MDBS target list. Consequently, it can

simply be copied into the MDBS request. The 'FROM table name

(WHERE boolean]" portion of the SQL request requires a

conversion mapping into the "query" portion of the MDBS

language. This conversion will be discussed in Section C.

The reserved words 'GROUP BY' of SQL are directly translated

into the MDBS reserved word, BY. The attribute upon which

45

the grouping is to take place is copied from the SQL query

to the MDBS request.

2. Mapping the SQL INSERT into the MDBS INSERT

Figure 5 illustrates the mapping required for the in-

sert requests. The general form for the SQL INSERT request

is:

INSERT INTO tablename VALUES insert spec

The MDBS INSERT request's form is:

INSERT record.

The reserved word INSERT is the same for the two requests.

The remaining portion of the SQL request, 'INTO table name

VALUES insert spec', requires a conversion mapping into the

record portion of the MDBS query. This conversion will be

explained in Section D.

46

INISERT INTO tatle.nawe VALUES irmsert.,Spec

INSERT rcr

Figure 5. papping th~e SOL 1NEERT to trne MOBS INSERTs

47

Ir

I

3. Mapping the SOL DELETE into the MDBS DELETE

The mapping for the delete requests is shown in Fig-

ure 6. The delete request in SQL has the general form:

DELETE FROM table-name (WHERE boolean]

While in MBDS the general form is:

DELETE query.

The reserved word DELETE is common to both requests. The

conversion of the "FROM table-name [WHERE boolean]" portion

of the SQL request into the "query" portion of the MDBS re-

quest is the same as that required in the SELECT request,

and will be discussed in Section C.

4. Mapping the SQL UPDATE into the MDBS UPDATE

Figure 7 depicts the mapping for the update request.

The general form for the update request in SQL is:

UPDATE table name set clause list

(WHERE boolean]

In MDBS the form is:

UPDATE query modifier.

The SQL reserved word UPDATE is simply copied into MDBS.

The "table name [WHERE boolean]* conversion mapping is like

that used in the SELECT and DELETE requests and will be ex-

plained in Section C. The setclauselist of SQL requires a

conversion mapping in order to match to the modifier

48

DELETE FRPGM table.narn. CEI4LP boolean]

VELETE query

Fi~ure 6. ?a;;ing tne SQL CELEIE to th~e '.DBS DELETE,

49

MPATE

tab le.nan'e

\ CHLRE oacean]

UPDATE que!ryMdfe

figure 7. mapping the 5S.L LI~tAIE to the 14DE5 UFCAfl.

Hs

portion of the MDBS request. That mapping is explained in

section E.

C. THE CONVERSION MAPPING TO THE MDBS QUERY

The select, delete and update requests of SQL all have a

"FROM table name [WHERE boolean]" portion. In the update

request it varies slightly in that the reserved word FROM is

not used. However, the conversion required is essentially

the same. This portion of the SQL request maps into the

"query" portion of the MDBS retrieve, delete and update re-

quests. However, due to the variety of forms and constructs

available in SQL, a conversion is required to reconstruct

this portion into an acceptable MDBS format.

As illustrated in Figure 8, much of the conversion re-

quires only a simple mapping. The specification of the MDBS

query requires that the first attribute-value relationship

be "FILE = attribute", where the attribute is the name of a

file. This is equivalent to the SQL, "FROM table-name"

In addition MDBS requires that queries be composed in

the disjunctive normal form. SQL does not have this res-

triction. This is demonstrated in the examples below, where

the SQL -(WHERE boolean]" clause is mapped into a

disjunction of conjunctions in the MDBS request. To explain

the conversions required to convert SQL's "boolean" into an

51

FROM table.nane LEI4ERE coolean)

File a ttricute mObS query ±orm

Figure 8. Papcing tc tne M ,SS query.

52

acceptable MDBS "query*, examples will be used. In each

case a SQL request will be shown, followed by the

corresponding request in MDBS.

Example 1. Obtain the names of the employees that

have a salary of 10000 and are clerks.

SELECT Name

FROM Emp

WHERE Sal 10000 AND Job = Clerk

RETRIEVE

((File = Emp) A

(Sal = 10000) A (Job = Clerk))

<Name>

53

wt

Example 2. Obtain the names of employees who have

a salary between 5000 and 10000.

SELECT Name

FROM Emp

WHERE Sal BETWEEN 5000 AND 10000

RETRIEVE

((File Emp) A

((Sal >= 5000) A (Sal <= 10000)))

<Name>

54

Example 3. Obtain the names of employees who are

employeed as a clerk, analyst or manager.

SELECT Name

PROM Emp

WHERE Job IN (Clerk, Analyst, Manager)

RETRIEVE

(((File = Emp) A (Job = Clerk)) V

((File = Emp) A (Job = Analyst)) V

((File = Emp) A (Job = Manager)))

<Name>

As seen in example 3 above, the reconstruction of the SQL

request into acceptable MDBS disjunctive normal form re-

quires the identification of the file attribute in each

predicate.

55

D. THE CONVERSION MAPPING TO THE MDBS RECORD

SQL's insert request uses "INTO table name VALUES

insert-spec" to identify the relation and attribute values

that are to be inserted as a record. This corresponds to

the Orecord" portion of the MDBS insert request. The MDBS

record is a series of attribute-value pairs. The first pair

is the file name (ex. <File,Emp>). This corresponds to

SQL's "INTO table-name* which identifies the relation name.

Figure 9 illustrates this mapping.

The "insert_spec" portion of the SQL insert request is a

listing of the values to be inserted in the relation. The

ordering of the values must be identical to the ordering of

the attributes in the relation, and all attributes must have

an assigned value. MDBS, on the other hand, represents a

record as a list of attribute-value pairs. There is no re-

quirement for ordering of the attribute-value pairs, as

values are matched with attributes. Nor does MDBS require

that values be assigned to all attributes. Instead MDBS as-

signs default values of zeros or spaces for integer and

character attribute types.

In order to implement the SQL insert request, the MDBS

record template information will have to be made available

to the interface. The attribute names in the record

template are ordered. The attribute names in the template

56

Al

INTIO table..name VALUES insert-.spec

S S

File attrbute Merge witfl attritute
namnes tram~ template,

Figure 9. Mac.1ng to tne moes record.

can then be matched to the values listed in the SQL insert

request to form the attribute-value pairs of the MDBS

record. For example, the following SQL insert request

INSERT INTO Emp VALUES Smith, Clerk, 10000

would be converted to read

INSERT (<File,Emp>, <Name,Smith>,

<Job,Clerk>, <Sal,10000>).

Alternatives for implementing this conversion will be

further discussed in Chapter 6.

E. THE CONVERSION MAPPING INTO THE MDBS MODIFIER

The "set clause list" of the SQL update request has a

direct correlation to the "modifier" of the MDBS update re-

quest. Figure 10 illustrates this mapping. SQL has

constructs to represent the first four types of MDBS modif-

iers. The TYPE-0 modification sets the new value of the at-

tribute being modified to a constant. The TYPE-I modifica-

tion obtains the new value of an attribute being modified by

setting it to some function of the old value. The TYPE-II

modification sets the value of the attribute being modified

to some function of another attribute contained within the

same record. The TYPE-III modifier derives the value of the

attribute being modified from some function of an attribute

contained within another record. SQL has no construct which

58

SET tield.rane :expr

attribute.beiiQ..roditied WDES modifier fer'm

Figu.re 10. maccir.g te the PUDS modifier,

rp

corresponds to a TYPE-IV modification, which derives the new

value of the attribute being modified from a function of

another attribute value in another record identified by the

pointer in the modifier.

SQL offers a wide variety of constructs for its "expr"

in the set clauselist. In the examples below, we illustrate

the correspondence between these constructs and the MDBS

modifiers. The conversion required is a reordering or

rewriting of these constructs into acceptable MDBS format.

The conversion is much like that used in the query mapping

of Section B. The following examples illustrate the conver-

sions that are required. For simplicity, the examples are

singular updates. The SQL request will be presented first,

followed by the corresponding MDBS request.

60

Example 4. Set the salary of all employees named

Smith to 10000.

(Ex. MDBS Type-0 modification)

UPDATE Emp

SET Salary = 10000

WHERE Name =Smith

UPDATE ((File = Emp) A
(Name = Smith))

<Salary = 10000>

61

Example 5. Double the salary of all employees

named Smith.

(Ex. MDBS Type-I modification)

UPDATE Emp

SET Salary =2* Salary

WHERE Name = Smith

UPDATE ((File = Emp) A
(Name = Smith))

<Salary = 2* Salary>

62

Example 6. Set the salary of all employees

named Smith to eight times the value

of their rank.

(Ex. MDBS Type-It modification)

UPDATE Emp

SET Salary = 8 * Rank

WHERE Name = Smith

UPDATE ((File = Emp) A

(Name = Smith))

<Salary = 8 * Rank>

63

Example 7. Set the salaries of the employees

named Smith to that of a manager's,

as recorded in the Positions file.

(Ex. MDBS Type-III modification)

UPDATE Emp

SET Salary = (SELECT Salary

FROM Positions

WHERE Job = Manager)

WHERE Name = Smith

UPDATE ((File = Emp) A
(Name = Smith))

<Salary = Salary of (File = Positions) 4

(Job M 'anager)>

64

VI. RECOMMENDATIONS FOR IMPLEMENTATION

In Chapter V we demonstrated that a SQL-to-MDBS query

language interface could be constructed for a subset of SQL.

In this chapter, we will discuss the implementation issues.

The first section deals with two areas of differences

between the constructs of SQL and the MDBS query language.

One is the MDBS requirement that queries be constructed in

the disjunctive normal form. The other is the difference in

the construct of the insert requests, as addressed in

Chapter V, Section D.

In the second section we give suggestions for expanding

the capabilities of the SQL/MDBS interface to support some

SQL constructs that MDBS does not directly support. These

are constructs which can be mapped from a single SQL request

Into a series of MDBS requests. The third section discusses

extending MDBS to support the join and sort operations. The

last section of this chapter discusses the use of program

development tools to aid in the actual implementation.

A. SQL AND MDBS DIFFERENCES

In order to effectively support the SQL-to-MDBS inter-

face, two differences in construct between the two languages

have to be resolved. The first is the MDBS requirement that

65

all queries be written in the disjunctive normal form. The

second is the form of the SQL insert request as compared to

the MDBS insert request.

1. The Disjunctive Normal Form

MDBS requires the query portion of the retrieve,

delete, and update requests to be written in disjunctive

normal form. On the other hand most commercial versions of

SQL do not place this restraint on the user. In order to

support this capability, the interface will be required to

translate the free-form logical SQL statements into the dis-

junctive normal form. In the very simple cases this is not

an extraordinary burden. However, in any involved query the

cost of translation could be expensive. For this reason,

and to simplify construction of the interface, we believe

that the user should be required to formulate his requests

in the disjunctive normal form. This should not place a

burden on the user since typically most requests are of a

simple construction.

2. Differences in the Insert Request

The syntax of the insert request in SQL places a bur-

den on the user to know the construction of the table into

which he/she wishes to insert values. Each field must have

an assigned value, and values must be listed in the order of

the field names in the table definition. MDBS, on the other

66

hand, specifies the record to be inserted as a list of

attribute-value pairs. The attribute-value pair is a direct

assignment of value to the indicated attribute. There is no

constraint on the ordering of the pairs.

We recommend an enhancement for the SQL language inter-

face, a new syntax for the insert request. The revised gen-

eral form would be

INSERT INTO table-name VALUES insert values.

The syntax for insertvalues would be

insertvalues := (fieldname,insert_spec)

I insertvalues, (fieldname,insert_spec)

This change in syntax brings the SQL insert command into

line with the attribute-value pair syntax of the MDBS query

language. More importantly it is believed that this change

will improve user-friendliness.

B. EXPANDING THE FUNCTIONALITY OF THE INTERFACE

There are some basic SQL constructs which, while not

directly supported by MDBS, can be mapped into a series of

MDBS requests. The most important of these is the nested

select construct. Additionally, commercial implementations

of SQL offer a variety of features for manipulating and

67

-~. -~...

I

editing data in result relations. We discuss below how the

SOL-to-MDBS interface can be extended to provide these

features.

1. Implicit Joins Through Nested Selects

SOL has the capability to nest select requests, as

discussed in Chapter IV. MDBS does not have this capabil-

Ity. The SQL syntax dictates that the innermost nested

select be evaluated first. Evaluation then proceeds out-

ward. Translated into MDBS, this requires a succession of

retrieve statements. The innermost select statement

corresponds to the first retrieve request. The following is

an example of a SQL request with a nested select, and a

series of MDBS retrieve requests that obtain the same

results.

68

- - a. - -.

Example. Obtain the names of the emplo'ees who have

a salary equal to that of a manager.

SELECT Name

FROM Emp

WHERE Sal = (SELECT Sal

FROM Payroll

WHERE Job = Manager)

RETRIEVE ((File = Payroll) A (Job = Manager)) <Sal>

RETRIEVE ((File = Emp) A (Sal = Sal)) <Name>

In the above example the Sal value obtained in the first

MDBS request would be used as the Sal value in the second

retrieve in order to obtain the Name.

In order to implement this capability in the interface

we recommend that a pre-preprocessor be written that

exclusively looks for nested selects. The pre-preprocessor

finds the innermost select and sends it to the preprocessor.

The value(s) obtained from the operation would then be

Inserted into the query portion of the next level select.

This outward operation would continue until the entire

69

request had been executed. Utilization of the

pre-preprocessor allows the preprocessor to operate on

single select requests.

2. Formatting Options

SOL gives the user some options in the formatting of

his/her output within the context of the select request.

This includes creating new headings, indentations, and pro-

ducing columnar/tabular outputs. The following example

changes the column name based on the Sal attribute to a more

readable heading, "Salary".

SELECT Name, Sal Salary

FROM Emp

WHERE Name = Smith

In order to make MDBS more user-friendly and useful in the

area of report generation and formatting, we recommend that

a post-processor be implemented as part of the interface.

The post-processor would be responsible for performing the

format and output options.

3. Arithmetic Operations and Functions

SQL affords the user the ability to specify arithmet-

ic operations and functions on the values of the result re-

lation. For example, the following select request creates a

new column in the output called 'comm/sal', which is derived

70

.... . .. " , " . . ." ' - im '" , , _ , __ , , " .,.. ,. "_ . -• _ -" '- ' 't_ , '9

from two existing attributes by dividing the comm attribute

by the sal attribute.

SELECT Name, Comm/Sal, Comm, Sal

FROM Emp

WHERE Job = Salesman

The following is an example of a arithmetic function option

in SQL.

SELECT Name, ROUND(Sal,2)

FROM Emp

WHERE Job = Salesman

This example rounds the value of Sal to two decimal places.

These and similar operations, can be implemented in a

post-processor.

C. JOIN AND SORT OPERATIONS

SQL and the relational data model support join and sort

operations. Currently MDBS does not support either. Imple-

mentation of the nested select, as discussed in the previous

section, would enable MDBS to support implicit joins, I.e.,

nested select requests. As MDBS is still in development,

"urther research is required into the feasibility and

desirability of implementing these operations on MDBS. The

71

consideratons of costs versus the additional capability that

would be provided by such an implementation is outside the

scope of this paper. However, if implemented, the effort to

include the required SQL-to-MDBS translation in the

interface would be minimal.

D. TOOLS FOR ACTUAL IMPLEMENTATION

We recommend that the actual implementation of the in-

terface be done using Yacc [Ref. 19] and Lex [Ref. 20], pro-

gramming tools developed at Bell Laboratories. They can be

used to produce an interpreter which accepts SQL requests

and outputs the translated MDBS request.

Lex is a lexical analyzer generator, designed for lexi-

cal processing of character input streams. The user sup-

plies the specifications for character string matching, Lex

then produces a program in the programming language C, which

recognizes regular expressions. Lex is generally used with

Yacc to recognize and supply tokens.

Yacc, an acronym for Yet Another Compiler-Compiler, is a

general tool for imposing structure on the input to a com-

puter program. The user prepares a specification of the in-

put process, i.e., rules and actions. Yacc then generates a

program of functions to control the input process. Yacc

calls the lexical analyzer (Lex) to supply tokens, and then

I

.72

parses the supplied tokens according to the production

rules.

Utilization of Yacc and Lex has several advantages.

First, the MDBS query parser was created using these tools.

Therefore in the event of any required scanner/parser to

scanner/parser communications, both would be operating in

similar environments. Second, both are written in C, which

improves their transportability. Third, Yacc and Lex are

both well documented and are relatively easy to use.

73

VII. CONCLUSION

MDBS uses the attribute-based data model. Records are

composed of ordered pairs of the form (an attribute, its

value). Descriptors, or indices, are defined for selected

directory attributes. These descriptors are used to parti-

tion the database into clusters. The clusters are distri-

buted across the backends to take full advantage of parallel

execution of requests.

The MDBS user accesses the database using a simple,

non-procedural query language. The language supports four

different types of requests: retrieve, insert, delete, and

update. The retrieve query is used to access, but not

alter, the contents of the database. The insert and delete

requests are used to add or remove records in the database.

The update request modifies existing records of the

database.

SQL is a relational query language, designed for use

with relational databases. Like the MDBS query language, it

has four different types of requests: select, insert,

delete, and update. Like the MDBS retrieve request, the

select accesses, but does not alter, the contents of the da-

tabase. The SQL insert, delete, and update requests perform

operations similar to those of their MDBS counterparts.

74

However, unlike the MDBS query language, SQL offers a

variety of options in the syntax of its requests. This

variety enables SQL requests to be constructed with varying

degrees of logical and syntactical complexity.

In this thesis, we have identified the direct mappings

from SQL queries into MDBS queries. These mappings can be

directly supported in the SQL-to-MDBS interface. We have

also identified those SQL constructs which have no direct

mapping, but can be converted into a sequence of MDBS

queries. Enhancements to the interface are proposed to sup-

port these indirect mappings. Lastly, we have identified

those SQL constructs for which no mapping exists. To sup-

port these mappings, the functionality of MDBS must be aug-

mented. Let us discuss each of these cases, identifying the

contributions of this thesis and directions for further

research.

A. THE DIRECT MAPPINGS

Some SQL queries can be directly mapped into MDBS re-

quests. The retrieve, insert, delete, and update requests

of MDBS have a direct functional correspondence to the SQL

select, insert, delete, and update requests, respectively.

There are three exceptions which require a degree of insight

in order to perform a mapping. These are the mapping of the

75

"FROM tablename [WHERE boolean]" portion of SOL into the

"query" portion of MDBS, the mapping of the SOL "INTO

table name VALUES insert_spec" into the MDBS "record", and

the mapping of the SQL "setclause list" into the MDBS

"modifier".

MDBS requires that the query portion of the request be

written in disjunctive normal form. SOL, on the other hand,

allows for free formatting of its logical constructs. To

convert the SQL "FROM table-name [WHERE boolean]" construct

into acceptable MDBS "query" format requires translating the

options contained in the SQL "boolean" into MDBS disjunctive

normal form. The complexity of this translation is O(n**n),

where n is the number of predicates in the boolean expres-

sion. In order to limit the overhead of this translation,

we recommend that the SQL-to-MDBS interface require the user

to construct SOL qualifications in disjunctive normal form.

The SOL insert request uses "INTO table-name VALUES

insert spec" to identify the relation and to list the values

to be inserted. This list of values must correspond in ord-

er and type to the constructed relation. MDBS, on the other

hand, uses attribute-value pairs for insert parameters. One

solution to this conversion is to have the SQL-to-MDBS

interface provide to the user the MDBS record template for

assignment of values. Another approach, which we recommend,

76

- - " " ' .i .' 2 . ., "
"

:2: ... ' -: .-q:N .i. " . .

is to alter the syntax of SQL's insert request to make it

correspond to the attribute-value pair syntax of the MDBS

record'. This eliminates the requirement that the user

know the exact structure of the relation definition.

SQL's Oset clause list" and MDBS's "modifier" are used

to identify the attributes to be changed as a result of an

update request. In addition, they specify the type of up-

date. With the exception of the TYPE-IV modification in

MDBS, which uses a pointer, there is a direct correspondence

between the two languages in the syntax of their update re-

quests. The only conversion required is formatting the

"setclauselist" into one of the acceptable MDBS "modifier"

types.

These direct mappings have been fully explained in this

thesis. Further research will involve implementing the in-

terface. For implementation a lexical scanner and an inter-

preter could be constructed using the Yacc and Lex

programming tools.

!2 4

77

RI -

B. ENHANCEMENTS TO SUPPORT FURTHER MAPPINGS

There are several constructs which cannot be supported

by direct mappings, but can be supported by an enhanced in-

terface. The first of these is the implicit join operation,

implemented in SQL by the nested SELECT. A re-preprocessor

can be constructed to convert the nested SELECTs into a

series of MDBS queries, and to control the iterative

execution required.

Several options are available in commercial versions of

SQL which are not supported in MDBS, such as arithmetic

operations and functions, and output formatting. In order

to implement these features a post-processor could be con-

structed. Further research will be required to design and

analyze these pre- and post-processor functions.

C. OPERATIONS FOR WHICH NO MAPPING EXISTS

The SQL options that cannot be supported by MDBS are re-

lated to the relational join operation and to the sorting

capability commonly found in relational systems. MDBS,

which is not a relational system but an attribute-based sys-

tem, does not support either the join or the sort operation.

In order to provide a fully-functional relational inter-

face to MDBS, some provision must be made to implement these

operations. There are two choices. First, the join and

78

-AM

sort operations could be implemented in MDBS. Second, these

operations could be preformed by additional software running

on the host. Further research will be required to identify

the costs and the tradeoffs of these two alternatives.

i i

79

Mai

APPENDIX A: FORMAL SPECIFICATION OF DML FOR ATTRIBUTE-BASED
LANGUAGE

The following is the BNF for the attribute-based data
manipulation language developed by Hsiao and Menon (Ref].
Square brackets [I are used to indicate optional con-
structs.

Predicate attribute relop value

attribute := char string

attribute being modified := attribute

base-attribute :- attribute

value :- string
I number
I float

Conjunct : (Predicate)
I (Conjunct / Predicate)

Query Conjunct
I Query / Conjunct

Stat = AVG I MAX I MINI SUM I COUNT

list el :- Stat (attribute)

list = attribute
I list el
I listattribute
I list,list el

Target-list : (list)

Attrib-val_pair : <attribute,value>

Half record f Attrib_val_pair
I Halfrecord, Attrib_valpair

Record : = (Half record)

80

, .

Pointer : number

Modifier type-O
Itype-I
Itype-Il
Itype-III
Itype-IV

type-O <attribute_being_modified =
value>

type-I = <attribute-being_mnodified=

expri>

type-II <attribute_being_modified =
expr2>

type-III <attribute being_modified=
expr2 of Query>

type-IV :- <attribute~being_modified
expr2 of Pointer>

Request :- Insert
IDelete
IUpdate
IRetrieve

Insert : INSERT Record

Delete :- DELETE Query

Update -UPDATE Query Modifier

Retrieve := RETRIEVE Query Target_list
(BY Attribute]
(WITH Pointer]

uc-letter : A I B I C I..IZ

string =uc letter
istring uc letter

lc-letter =a Ibi c Iz

81

char-string uc *cletter
F har-string ic_letter

digit . 0 1 1 1 2 I .. I9

number digit
Idigit number

float =number.number

add op + -

mult-op /

Iexpri add-op arith termi

arith termi : arith factori
arith termi mult op

arithfactori

arith factori : attribute -being_modified
Inumber

expr2 -arith term2
IexprF2 add-op arith_term2

arith-term2 : arith factor2
IariTh term2 mult op

arl1th factor2-

arit-fato= base attribute
aritfactr2 inumiber

82

APPENDIX B: FORMAL SPECIFICATION OF DML FOR SQL MAPPING

The following is the BNF for the SQL query language to
MDBS query language mapping. Square brackets [] are used
to indicate optional constructs.

dmlstatement := selection;
I insertion;
I deletion;
I update;

insertion := INSERT INTO table'name VALUES
insert_spec

insertspec selection

I literal

deletion : DELETE FROM table name
[where clause]

update := UPDATE table _name set clause list

[where-clause]

where-clause := WHERE boolean

set clause list := set clause
I set clause list , set-clause

set-clause := SET field name = expr
I SET field-name = (selection

selection := query block
I (selection

query_block := select clause FROM table-name
[WHERE boolean I
[GROUP BY attribute]

selectclause := SELECT selexpr_list
I SELECT *

83

......

selexpr_list :=sel_expr
lsel_expr_list ,ssellexpr

selexpr := field name
I stat (field-name)

boolean boolean term
I boolean OR boolean term

boolean term := boolean factor
I boolean term AND boolean factor

boolean factor := [NOT I boolean_primary

predicate := attribute comparison value
I attribute BETWEEN value AND value
I attribute NOT BETWEEN value AND

value
I attribute comparison tablespec
tablespec comparison

full tablespec

fulltable_spec table_spec
I value

tablespec := queryblock
I (selection
I (literal)

expr := arith term
I expr add op arithterm

arith term : arith factor
I arithterm multop arith_factor

arithfactor := primary

primary := value
I (expr

comparison : rel op
I IN

I NOT IN

relop : I<> I < I>I< I>-

add.op : + 1 -

84

......................................

multop * 1/

stat := AVG I MAX I MINI SUM I COUNT

literal := lit tuple list
I iTt_tupTe

lit tuplelist := lit tuple
I lit tuple list , lit_tuple

lit tuple : value

table-name := attribute

field-name := attribute

attribute := char string

value : string
number
Sfloat

charstring : uc letter
I char string lc_letter

string := uc letter
I string ucletter

uc letter : A i B i C I ... I Z

lc letter : a I b I c I ... z

number := digit

I number digit

float := number . number

digit : 0 I 1 I 2 I .-- I 9

85

LIST OF REFERENCES

1. Menon, M. J., Hsiao, D. K., "Design and Analysis of a
Multi-Backend Database System for Performance Improve-
ment, Functionality Expansion and Capacity Growth
(Part I)", Technical Report OSU-CISRC-TR-81-71,
The Ohio State University, 1981

2. He, X., and others, "The Implementation of a Multi-
Backend Database System (MDBS): Part II - The Design
of a Prototype MDBS", Advanced Database Machine Arch-
tectures, Prentice-Hall, 1983, pp. 327-385

3. Astrahan, M. M., and others, "System R: Relational
Approach to Database Management", Transactions on
Database Systems, Volume 1, Number 2, Jun 1976,
pp. 97-137

4. Su, S. Y. W., "Cellular-Logic Devices: Concepts and
Applications", Computer, Mar 1979, pp. 11-25

5. Su, S. Y. W., "The Architectural Features and Imple-
mentation Techniques of the Multicell CASSM", IEEE
Transactions on Computers, Vol C-28, No. 6, Jun 1979,
pp. 430-445

6. Ozkaharahan, E. A., Schuster, S. A., and Smith, K. C.,
"RAP -- An Associative Processor for Data Base
Management", Proceedings of the National Computer
Conference, 1975, pp. 379-387

7. Bannerjee, J., Hsiao, D. K., and Baum, R. I.,
"Concepts and Capabilities of a Database Computer",
ACM Transactions on Database Systems, Vol. 3, No. 4,
De-c 1978, pp. 347--184

8. Bannerjee, J., Hsiao, D. K., and Krisnamurthi, K.,
"DBC - A Database Computer for Very Large Databases",
IEEE Transactions on Computers, Vol. C-28, No. 6,
Jun 1979, pp. 414-429

86

.......

9. DeWitt, D. J., "DIRECT - A Multiprocessor Organization
for Supporting Relational Database Management Systems",
IEEE Transactions on Computers, Vol C-28, No. 6,
Jun1979, pp. 395-406

10. Schweppe, H., and others, "RDBM: A Dedicated Multi-
processor System for Data Base Management", Advanced
Database Machine Architectures, Prentice-Hall, 1983,
pp. 36-86

11. Bancilhon, F., and others, OVERSO: A Relational
Backend Database Machine", Advanced Database Machine
Architectures, Prentice-Hall, 1983, pp. 1-18

12. Missikoff, M. and Terranova, M., "The Architecture of
a Relational Database Computer Known as DBMAC",
Advanced Database Machine Architectures,
Prentice-Hall, 198, pp. 87-108

13. Britton Lee, Inc., Intelligent Database Machine
Product Description, 1983

14. Strawser, P. R., "A Methodology for Benchmarking
Relational Database Machines", Ph.D. Dissertation,
The Ohio State University, 1983

15. Codd, E. F., "Relational Completeness of Data Base
Sublanguages", Data Base Systems, Prentice-Hall,
1972, pp. 65-98

16. Chamberlin, D. D., and Boyce, R. F., "SEQUEL: A
Structured English Query Language", Proc. ACM
SIGFIDET Workshop, Ann Arbor, Mich., May 1974,
pp. 249-264

17. Hsiao, D. K., and Harary, F., "A Formal System for
Information Retrieval from Files", Communications of
the ACM, Vol. 13, No. 2, Feb 1970, pp. 67-73

18. Oracle, Relational Software Incorporated, Menlo Park,
California, Mar 1983

19. Johnson, S. C., "Yacc : Yet Another Compiler-Compiler"
Bell Laboratories, Murray Hill, N. J., Jul 1978

87

20. Lesk, M. E. and Schmidt, E., "Lex - A Lexical Analyzer
Generator", Bell Laboratories, Murray Hill, N. J.,
Jul 1978

88

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Curricular Officer, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943

5. Dr. D. K. Hsiao, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

6. Dr. P. R. Strawser, Code 52 1

Computer Science Department
Naval Postgraduate School
Monterey, California 93943

7. HQ COMNAVSECGRU
ATTN% LCDR Curtis Ryder, G30D
3801 Nebraska Avenue
Washington, DC 20390

8. Commanding Officer
ATTN: LT Griffin N. Macy
Naval Security Group Activity Northwest
Chesapeake, Virginia 23322

89

